1,091 research outputs found

    Optimization of PV Model using Fuzzy- Neural Network for DC-DC converter systems

    Get PDF
    Abstract: Due to the large demand on energy, energy sources, as well as the problems of the environment such as the dynamic weather conditions. Hence the world researchers nowadays are moving toward using solar energy because it gives different advantages over the traditional energy sources such as low maintenance costs, eternal sun energy, and the lack of revival of the gases of green houses. As a result, the photo- voltaic (PV) systems' power will be reduced. Under different weather conditions, maximizing the power point tracking (MPPT) is an important part to improve the solar systems power. In this paper, we introduce the neural network approaches for the PV systems. This paper also presents a novel application of Fuzzy Neural Network (FNN) in modeling a PV. The photovoltaic system model is designed with the use of MATLAB/SIMULINK software program with the connection of a DC-DC boost converter, a Maximum Power Point Tracking (MPPT) controller, a one-phase Voltage Source Converter (VSC) and a three-level bridge. The MPPT controller is used to cover the need for advanced controller that can detect the maximum power point in solar cell systems that have unstable current and voltage and keep the resultant power per cost low

    Odd/Even order sampling soft-core architecture towards mixed signals Fourth Industrial Revolution (4IR) Applications

    Get PDF
    Abstract : Digitization is at the center of fourth industrial revolution (4IR) with previously analog systems being digitized through an analog-to-digital converter. In addition, 4IR applications such as fifth generation (5G) Cellular Networks Technology and Cognitive Electronic Warfare (EW) at some point interface digitally through an analog-to-digital converter. Efficient use of digital resources such as memory, largely depends on the signal sampling design of analog-to-digital converters. Existing even order sampling has been found to perform better than traditional sampling techniques. Research on the efficiency of a digital interface with a 4IR platform is still in its infancy. This paper presents a performance study of three sampling techniques: the proposed new and novel odd/even order sampling architecture, existing Mod-∆, and traditional 1st order delta-sigma, to address this. Step-size signal-to-noise (SNR), dynamic range, and sampling frequency are also studied. It was found that the proposed new and novel odd/even order sampling achieved an SNR performance of 6 dB in comparison to 18 dB for Mod-∆. Sampling frequency findings indicated that the proposed new and novel odd/even order sampling achieved a sampling frequency of 2 kHz in comparison to 8 kHz from a traditional 1st order sigma-delta. Dynamic range findings indicated that the proposed odd/even order sampling has achieved a dynamic range of 1.088 volts/ms in comparison to 1.185 volts/ms from a traditional 1st order sigma-delta. Findings have indicated that the proposed odd/even order sampling has superior SNR and sampling frequency performances, while the dynamic range is reduced by 8%

    Improving single classifiers prediction accuracy for underground water pump station in a gold mine using ensemble techniques

    Get PDF
    Abstract: In this paper six single classifiers (support vector machine, artificial neural network, naïve Bayesian classifier, decision trees, radial basis function and k nearest neighbors) were utilized to predict water dam levels in a deep gold mine underground pump station. Also, Bagging and Boosting ensemble techniques were used to increase the prediction accuracy of the single classifiers. In order to enhance the prediction accuracy even more a mutual information ensemble approach is introduced to improve the single classifiers and the Bagging and Boosting prediction results. This ensemble is used to classify, thus monitoring and predicting the underground water dam levels on a single-pump station deep gold mine in South Africa, Mutual information theory is used in order to determine the classifiers optimum number to build the most accurate ensemble. In terms of prediction accuracy, the results show that the mutual information ensemble over performed the other used ensembles and single classifiers and is more efficient for classification of underground water dam levels. However the ensemble construction is more complicated than the Bagging and Boosting techniques

    Use of MPPT techniques to reduce the energy pay-back time in PV systems

    Get PDF
    Abstract: Photovoltaic (PV) energy is a free-energy that is used as an alternative to fossil fuel energy. However, PV system without maximum power point tracking (MPPT) produces a low, unstable power and with a long energy pay-back time. This paper presents an innovative artificial neuro-fuzzy inference system (ANFIS) MPPT technique that could extract maximum power from a complete PV system and with a lessened EPBT. To confirm the effectiveness of the ANFIS algorithm, its result was compared with the results of PV system using Perturb&Observe (P&O) technique, non-MPPT technique, combination of artificial neural network and support vector machine as ANN-SVM technique and using Pretoria city weather data as case studies. Results show that ANFIS-MPPT yielded the best result and with the lowest EPBT

    Curve fitting polynomial technique compared to ANFIS technique for maximum power point tracking

    Get PDF
    Abstract: In this paper, an approach of designing a fast tracking MPPT is introduced using a predicted sixth order polynomial curve fitting MPPT technique. The results are compared with the lower order polynomials curve fitting MPPT and also compared with the Artificial Neuro-Fuzzy Inference System (ANFIS) results. The polynomials were generated from an offline solar data. This work was done to validate the effect of using a higher order polynomials under various weather conditions using modified CUK DC-DC converter. Findings suggest that using the 6th order polynomial curve fitting and the ANFIS techniques could track the highest maximum power point than the lower order curve techniques

    Gold mine dam levels and energy consumption classification using artificial intelligence methods

    Get PDF
    Abstract: In this paper a comparison between two single classifier methods (support vector machine, artificial neural network) and two ensemble methods (bagging, and boosting) is applied to a real-world mining problem. The four methods are used to classify, thus monitoring underground dam levels and underground pumps energy consumption on a doublepump station deep gold in South Africa. In terms of misclassification error, the results show support vector machines (SVM) to be more efficient for classification of underground pumps energy consumption compared to artificial neural network (ANN),..

    Mitigation of impulse noise in powerline systems using ANFIS technique

    Get PDF
    Abstract: The use of OFDM channel for the transmission of data in power line communication (PLC) system has been of several importance to technology development. However, during transmission, the OFDM channel is greatly disturbed by impulse noise that causes a wrong information to be received. Several techniques such as iteration, coding, clipping and nulling methods have been used to lessen the upshot of impulse noise in OFDM channel. However, these techniques still suffer some drawbacks and require a high signal-to-noise (SNR) power for high performance. This paper presents an advanced use of artificial neuro-fuzzy inference system (ANFIS) technique in removing the complete impulse noise and some of the additive white Gaussian noise (AWGN) that were mixed with the transmitted data in an OFDM channel and using the minimum SNR power. Obtained results propose that ANFIS technique can be used to mitigate impulse noise from a powerline communication channel

    Mitigation of impulsive noise in OFDM channels using ANN technique

    Get PDF
    Abstract: Orthogonal frequency division multiplexer (OFDM) is a recent modulation scheme used to transmit signals across power line communication (PLC) channel due to its robustness against some known PLC problems. However, this scheme is greatly affected by the impulsive noise (IN) and often causes corruption with the transmitted bits. Different impulsive noise error correcting methods have been introduced and used to remove impulsive noise in OFDM systems. However, these techniques suffer some limitations and require much signal to noise ratio (SNR) power to operate. In this paper, an approach of designing an effective impulsive-noise error-correcting technique was introduced using three-known artificial neural network techniques (Levenberg-Marquardt, Scaled conjugate gradient, and Bayesian regularization). Findings suggest that both Bayesian regularization and Levenberg-Marquardt ANN techniques can be used to effectively remove the impulsive noise present in an OFDM channel and using the least SNR power

    Applications of artificial intelligence in powerline communications in terms of noise detection and reduction : a review

    Get PDF
    Abstract: The technology which utilizes the power line as a medium for transferring information known as powerline communication (PLC) has been in existence for over a hundred years. It is beneficial because it avoids new installation since it uses the present installation for electrical power to transmit data. However, transmission of data signals through a power line channel usually experience some challenges which include impulsive noise, frequency selectivity, high channel attenuation, low line impedance etc. The impulsive noise exhibits a power spectral density within the range of 10-15 dB higher than the background noise, which could cause a severe problem in a communication system. For better outcome of the PLC system, these noises must be detected and suppressed. This paper reviews various techniques used in detecting and mitigating the impulsive noise in PLC and suggests the application of machine learning algorithms for the detection and removal of impulsive noise in power line communication systems
    • …
    corecore